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Abstract

	 The	main	objectives	of	this	study	are	to	determine	the	crop	coefficient	of	corn	(Kccorn) using data mining technique 
under climate change scenarios, and to develop the guidelines for future water management based on climate change sce-
narios. Variables including date, maximum temperature, minimum temperature, precipitation, humidity, wind speed, and 
solar radiation from seven meteorological stations during 1991 to 2000 were used. Cross-Industry Standard Process for 
Data	Mining	(CRISP-DM)	was	applied	for	data	collection	and	analyses.	The	procedures	compose	of	investigation	of	input	
data,	model	set	up	using	Artificial	Neural	Networks	(ANNs),	model	evaluation,	and	finally	estimation	of	the	Kccorn. Three 
climate	change	scenarios	of	carbon	dioxide	(CO2) concentration level: 360 ppm, 540 ppm, and 720 ppm were set. The results 
indicated	that	the	best	number	of	node	of	input	layer	-	hidden	layer	-	output	layer	was	7-13-1.	The	correlation	coefficient	
of model was 0.99. The predicted Kccorn	revealed	that	evapotranspiration	(ETcorn)	pattern	will	be	changed	significantly	upon	
CO2	concentration	level.	From	the	model	predictions,	ETcorn	will	be	decreased	3.34%	when	CO2 increased from 360 ppm to 
540	ppm.	For	the	double	CO2	concentration	from	360	ppm	to	720	ppm,	ETcorn will be increased 16.13%. The future water 
management guidelines to cope with the climate change are suggested.
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1. Introduction
 
	 Carbon	dioxide	(CO2)	is	one	of	significant	green-
house	gas	which	induces	temperature	rising	(The	Insti-
tution	of	Professional	Engineers	New	Zealand	(IPENZ),	
2001;	Chinwanno,	2007;	United	Nations	Environment	
Programme	(UNEP),	2009).	The	climate	change	situa-
tion affects living things including human life, plants, 
and animals on the earth and dramatically increased 
for	 five	 decades	 (1952-2009).	The	 unusual	 natural	
disasters	 such	 as	 drought,	 flood,	 tornado,	 hurricane, 
 volcanic eruption, earthquake, and landslide were ob-
served	(UNEP,	2009).	It	is	expected	to	spread	through-
out	the	world	including	Thailand	(Chinwanno,	2007).
 Thailand is an agricultural reliant country. Most 
of crop seasons depend on the climate, nature, and 
weather. Changes of climate could affect income of 
the country and agricultural products. In addition, the 
climate change is a cause of water supply situation. To 
predict the water demand and prepare water supply, 
the	prediction	of	evapotranspiration	(ET)	is	needed	for	
better	water	management	(IPENZ,	2001;	Mohan	and	
Arumugam, 1994). The most well known technique 
for	 ET	 estimation	 is	 based	 on	 the	 crop	 coefficient	
(Kc)	approach	(Allen	et al., 1998). The reference crop 
evapotranspiration	(ET0) is calculated by using standard 

meteorological variable and Kc. The Kc is necessary 
for estimating the relationship between atmosphere, 
crop physiology, and agricultural practices. The Kc is 
needed to determine the water consumption of selected 
crop, and to estimate water usage for irrigation and 
agriculture. In addition, Kc is also used in the criteria 
and factor for water resources planning and manage-
ment	(Akinbile	and	Sangodoyin,	2009).
 Kc values are derived from the relationship be-
tween	the	ET	and	ET0.	ET	is	measured	by	a	lysimeter,	
while	ET0 is calculated by lysimeter experiment which 
takes	long	period	of	time	and	high	cost	(Irrigation	Water	
Management	Research	Group,	2010;	Vudhivanich	and	
Udakarn,	2001).	Data	mining	technique	is	a	higher	ac-
curacy and fast in calculation. It can store a huge amount 
of	data	and	high	processing	(Berry	and	Linoff,	1997).	
Therefore, Data Mining was chosen in this study for 
store the weather data from 1991-2000, and to predict 
the Kc under the different scenarios.
 In light of the above, this study was developed to 
determine the Kc of corn, which indicated as an eco-
nomic	crop	of	Thailand	(Field	crops	research	Institute,	
2001), using data mining technique, to estimate the 
changing of Kc under climate change scenarios, and 
to develop the guidelines for water management in the 
future based on climate change scenarios.
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Abstract

The aim of the present study was to standardize and to assess the predictive value of the cytogenetic analysis
by	Micronucleus	(MN)	test	in	fish	erythrocytes	as	a	biomarker	for	marine	environmental	contamination.	Micronucleus
frequency baseline in erythrocytes was evaluated in and genotoxic potential of a common chemical was determined
in	fish	experimentally	exposed	in	aquarium	under	controlled	conditions.	Fish	(Therapon jaruba) were exposed for 96
hrs	to	a	single	heavy	metal	(mercuric	chloride).	Chromosomal	damage	was	determined	as	micronuclei	frequency	in
fish	erythrocytes.	Significant	increase	in	MN	frequency	was	observed	in	erythrocytes	of	fish	exposed	to	mercuric
chloride.	Concentration	of	0.25	ppm	induced	the	highest	MN	frequency	(2.95	micronucleated	cells/1000	cells	compared
to	1	MNcell/1000	cells	in	control	animals).	The	study	revealed	that	micronucleus	test,	as	an	index	of	cumulative
exposure, appears to be a sensitive model to evaluate genotoxic compounds in fish under controlled conditions.
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually	as	effluents	from	industries	(Saffi,	1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been	used	successfully	in	several	species	(De	Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus	 (MN)	 test	 has	 been	 developed
together	 with	 DNA-unwinding	 assays	 as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The	MN	tests	have	been	successfully	used	as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by	 MN	 and	 binucleate	 (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test	 (MN)	 for	 the	 estimation	of	 aquatic	pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3	cm	in	length	and	4-4.25	g	in	weight)
was selected for the detection of genotoxic effect
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2. Materials and Methods

 Methodological framework of this study was 
adopted and developed from CRoss Industry Standard 
Process	 for	Data	Mining	 (CRISP-DM)	methodology	
(Chapman	et al., 1999) which consists of six phases 
including objective understanding phases, data under-
standing phases, data preparation phases, modeling 
phases, evaluation phases, and deployment phases. The 
details of each phase are as following.

2.1. Objective Understanding Phase

 The objectives and requirements of the study were 
reviewed,	clarified,	and	converted	into	data	mining	as	
knowledge-base.

2.2. Data Understanding Phase

 Three types of data including the calculated Kc 
values using Penman-Monteith method from Royal 
Irrigation Department, the measured daily climate 
data from Thai Meteorological Department, and the 
predicted daily climate scenarios data using Conformal 
Cubic	Atmospheric	Model	 (CCAM)	 from	Southeast	
Asia	START	Regional	Center	(SEA	START	RC),	were	
used for learning of data sources and characteristics.
 The calculated Kc values were converted to daily 
Kc using graph plotting. The values were plotted into 
weekly	data	graph,	split	into	daily	data,	and	defined	as	
a point in graph of each day. The measured daily cli-
mate data during 1991-2000 including date, maximum 
temperature	(oC),	minimum	temperature	(oC), precipita-
tion	(mm),	humidity	(%),	wind	speed	(knot),	and	solar	
radiation	(Mjm-2day-1) were collected, learned, and set 
as data mining variable for modeling phase.
 The predicted daily climate scenarios data were 
collected, learned, and set as three climate scenarios. 
They	were	 three	 atmospheric	 CO2 concentration 
condition	(i)	360	ppm	(represented	conditions	during	
1980-1989),	(ii)	540	ppm	(represented	condition	during	
2050-2059),	and	(iii)	720	ppm	(represented	condition	
during 2090-2099). 

2.3. Data Preparation Phase

 The procedure of data preparation phase composed 
of data integration process, data cleaning process, data 
transformation process, and variable selection pro-
cess. 
 The combination of multiple records to be new 
tables in relational format was conducted in data in-
tegration process. Four tables were considered and 
changed for more complete, accurate, and valuable 

in data cleaning process. The blank and missing data 
were deleted from the tables. The wind speed unit was 
changed from knot to meter per second by multiplying 
with 0.514. 
 In data transformation process, the data were 
changed the format into normalized form which com-
patibles	with	ANNs	platform,	while	meaning	of	 the	
data	was	 not	 changed.	Normalization	 is	 a	 reduction	
of redundancy, reduction of incorrect data, and setting 
data into normalized form which values between 0 – 1 
(Swingler,	1996).	Waikato	Environment	for	Knowledge	
Analysis	(WEKA)	program	version	3.6.4	was	applied	
for data transformation. 
	 Statistical	Package	for	the	Social	Sciences	(SPSS)	
program version 16.0 was applied for variable selection 
using linear regression.

2.4. Modeling Phase

	 Model	selection,	data	classification,	model	creation,	
and	model	 verification	were	 conducted	 as	modeling	
phase.	Artificial	Neural	Network	(ANNs)	was	chosen	
to be a model for Kc prediction because of its high 
accuracy	and	complex	calculation	(Rumelhart,	1986).	
Structure	of	ANNs	model	has	three	layers:	input	layer,	
hidden	layers,	and	output	layer	(Fig.	1).	The	optimal	
number of nodes for each layer will be modeled for 
Kccorn.
 The manipulated data were categorized into three 
sets	of	data:	training	set	(80%),	testing	set	(10%),	and	
validation	set	(10%)	based	on	CRISP-DM	(Chapman	
et al., 1999). All of records were randomized and cat-
egorized into each set of data.
	 The	model	creation	phase	started	with	finding	the	
most	optimal	architecture	of	ANNs	using	WEKA.	The	
model	with	lowest	Root	Mean	Square	Error	(RMSE)	
will	be	set	to	be	the	optimal	architecture	of	ANNs.	
	 The	criteria	for	finding	the	optimal	number	of	nodes	
for	hidden	layer	were	set	(Blum,	1992;	Swingler,	1996;	
Berry	and	Linoff,	1997;	Allen,	1998).	The	initial	setting	
were also set as learning rate = 0.3, momentum = 0.2, 
and learning time = 500. The model which has lowest 
RMSE	value	is	selected.
 Training set data and testing set data were used for 
finding	the	optimal	 learning	time	using	WEKA.	The	
initial setting were set as number of nodes for hidden 
layer from previous section, learning rate = 0.3, and 
momentum = 0.2. Trial and error approach of learning 
time	was	500	to	10,000	times.	The	comparison	of	RMSE	
from training set and testing set data was conducted. 
The	 lowest	RMSE	difference	 between	RNSE	 from	
training set and testing set was the criteria for learning 
time optimization. 
	 Training	set	data	were	used	for	finding	the	optimal	
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learning	rate	and	momentum	using	WEKA.	The	initial	
settings were number of nodes for hidden layer and 
learning time from previous section. Trial and error 
approach was employed. The learning rates were set as 
0.1, 0.2, and 0.3. The momentums were set as 0.1, 0.2, 
0.3, 0.5, and 0.7. Two models which have the lowest 
RMSE	were	selected	for	model	verification.
 Validation set data was used for verifying the 
model	using	WEKA.	The	initial	settings	were	number	
of nodes for hidden layer = 13, learning time = 3,000, 
learning rate = 0.1, and momentum = 0.7. The model 
which	has	lowest	RMSE	value	will	be	selected	to	be	
a model.

2.5. Evaluation Phase

 Correlation and linear regression were employed 
for	 evaluation	phase.	Kc	values	 from	ANNs	Model,	

Penman-Monteith method, and linear regression were 
used	for	evaluation	phase.	Higher	correlation	coefficient	
(R)	indicated	more	effective	model.

2.6. Deployment Phase

	 All	of	manipulated	data	imported	into	WEKA	for	
Kc prediction. Three climate scenarios were set. The 
atmospheric	CO2 concentration conditions were set 
360 ppm, 540 ppm and 720 ppm as Scenario 1, 2, and 
3, respectively. The initial setting for Kc prediction 
was	set	using	the	optimal	architecture	of	ANNs	from	
model creation phase. The results of each scenario 
were analyzed and compared for the development of 
guidelines for water resources management coping with 
the changes of climate.

3. Results and Discussion

Figure	1.	ANNs	structure	(Rumelhart,	1986)
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The manipulated data were categorized into three sets of data: training set (80%), testing set 

(10%), and validation set (10%) based on CRISP-DM (Chapman et al., 1999). All of records were 
randomized and categorized into each set of data. 

The model creation phase started with finding the most optimal architecture of ANNs using 
WEKA. The	 model	 with	 lowest	 Root	 Mean	 Square	 Error	 (RMSE)	 will	 be	 set	 to be the optimal 
architecture	of	ANNs.  

The	criteria	 for	 finding	 the	optimal	number	of	nodes	for	hidden	 layer	were	set	 (Blum,	1992;	
Swingler,	1996;	Berry	and	Linoff,	1997;	Allen,	1998).	The	initial	setting	were	also	set	as	learning	rate	
= 0.3, momentum = 0.2,	 and	 learning	 time	 =	 500.	 The	 model	 which	 has	 lowest	 RMSE	 value	 is 
selected. 

Training set data and testing set data were used for finding the optimal learning time using 
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learning rate = 0.3, and momentum = 0.2. Trial and error approach of learning time was 500 to 10,000 
times. The comparison of	RMSE	 from	 training	set	 and	 testing	set	data was conducted. The lowest 
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 All	of	manipulated	data	imported	into	WEKA	for	Kc prediction. Three climate scenarios were 
set. The	 atmospheric	 CO2 concentration conditions were set 360 ppm, 540 ppm and 720 ppm as 
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Figure	2.	Graph	of	(A)	weekly	Kccorn,	(B)	daily Kccorn  
 
 Table 1 show the daily Kccorn data which were defined as a point in graph. Four tables from data 
integration were cleaned using deletion of records with missing data and unit changing. The cleaned 
tables have less number of records. The total records after cleaned were 6,817 from 6,860. In addition, 
wind	speed	unit	was	changed	to	meter	per	second	(ms-1).  
 
Table 1. Daily Kccorn values derived from graph plotting 
 

Day Kc Day Kc Day Kc Day Kc Day Kc Day Kc Day Kc 
              

1 0.09 15 0.74 29 1.16 43 1.53 57 1.62 71 1.48 85 1.11 
2 0.18 16 0.76 30 1.19 44 1.55 58 1.62 72 1.47 86 1.08 
3 0.27 17 0.78 31 1.22 45 1.56 59 1.61 73 1.45 87 1.04 
4 0.36 18 0.80 32 1.26 46 1.57 60 1.60 74 1.43 88 1.01 
5 0.45 19 0.82 33 1.29 47 1.58 61 1.59 75 1.41 89 0.97 
6 0.54 20 0.84 34 1.32 48 1.60 62 1.59 76 1.40 90 0.94 
7 0.63 21 0.86 35 1.35 49 1.61 63 1.58 77 1.38 91 0.90 
8 0.64 22 0.90 36 1.37 50 1.61 64 1.57 78 1.35 92 0.87 
9 0.66 23 0.94 37 1.40 51 1.62 65 1.56 79 1.31 93 0.83 
10 0.67 24 0.98 38 1.42 52 1.62 66 1.55 80 1.28 94 0.80 
11 0.68 25 1.01 39 1.45 53 1.62 67 1.53 81 1.25 95 0.77 
12 0.69 26 1.05 40 1.47 54 1.62 68 1.52 82 1.22 96 0.74 
13 0.71 27 1.09 41 1.50 55 1.63 69 1.51 83 1.18 97 0.70 
14 0.72 28 1.13 42 1.52 56 1.63 70 1.50 84 1.15 98 0.67 
              

 
All of data were transformed into normalized form, while the meaning of data was not changed. 

The results of variable selection using linear regression indicated significantly relation with Kc. All of 
relationships indicated low correlation coefficient	(R<0.5). Then, multiple regressions approach was 
conducted for proper decision. However, the overall correlation coefficient revealed the low 
relationship	among	seven	variables	and	Kc	(R=0.480). Total of 6,817 records were randomized and 

K. Bhaktikul et al. / EnvironmentAsia 5(1) (2012) 56-62



59

3.1. The results of preparation phase 
 
 The calculated Kc values were converted to daily 
Kc using graph plotting. Kccorn values were converted 
from	weekly	to	daily	data	using	graph	plotting	(Fig.	2). 
 Table 1 show the daily Kccorn data which were 
defined	as	a	point	in	graph.	Four	tables	from	data	in-
tegration were cleaned using deletion of records with 
missing data and unit changing. The cleaned tables have 
less number of records. The total records after cleaned 
were 6,817 from 6,860. In addition, wind speed unit 
was	changed	to	meter	per	second	(m/s).	

 All of data were transformed into normalized form, 
while the meaning of data was not changed. The results 
of variable selection using linear regression indicated 
significantly	 relation	with	Kc.	All	 of	 relationships	
indicated	 low	 correlation	 coefficient	 (R<0.5). Then, 
multiple regressions approach was conducted for proper 
decision.	However,	the	overall	correlation	coefficient	
revealed the low relationship among seven variables and 
Kc	(R=0.480). Total of 6,817 records were randomized 
and categorized into three sets of data. There were 5,454 
records of training set, 682 records of testing set, and 
681 records of validation set.

Table 1. Daily Kccorn values derived from graph plotting

Day Kc Day Kc Day Kc Day Kc Day Kc Day Kc Day Kc
1 0.09 15 0.74 29 1.16 43 1.53 57 1.62 71 1.48 85 1.11
2 0.18 16 0.76 30 1.19 44 1.55 58 1.62 72 1.47 86 1.08
3 0.27 17 0.78 31 1.22 45 1.56 59 1.61 73 1.45 87 1.04
4 0.36 18 0.80 32 1.26 46 1.57 60 1.60 74 1.43 88 1.01
5 0.45 19 0.82 33 1.29 47 1.58 61 1.59 75 1.41 89 0.97
6 0.54 20 0.84 34 1.32 48 1.60 62 1.59 76 1.40 90 0.94
7 0.63 21 0.86 35 1.35 49 1.61 63 1.58 77 1.38 91 0.90
8 0.64 22 0.90 36 1.37 50 1.61 64 1.57 78 1.35 92 0.87
9 0.66 23 0.94 37 1.40 51 1.62 65 1.56 79 1.31 93 0.83

10 0.67 24 0.98 38 1.42 52 1.62 66 1.55 80 1.28 94 0.80
11 0.68 25 1.01 39 1.45 53 1.62 67 1.53 81 1.25 95 0.77
12 0.69 26 1.05 40 1.47 54 1.62 68 1.52 82 1.22 96 0.74
13 0.71 27 1.09 41 1.50 55 1.63 69 1.51 83 1.18 97 0.70
14 0.72 28 1.13 42 1.52 56 1.63 70 1.50 84 1.15 98 0.67

Figure	3.	The	structure	of	ANNs	model	for	Corn	(7	–	13	–	1)
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 The optimal learning time from the findings was 3,000	with	the	lowest	RMSE	(RMSE	
difference = 0.0002). The results of optimal learning rate: momentum of corn were 0.1 : 0.7 and 0.2 : 
0.5. The results of model verification using validation set data are shown in Table 2.  
 
Table 2. Models for Deployment Phase 
 

Model Number of nodes  
for hidden layer Learning time Learning rate Momentum RMSE 

      
1 13 3,000 0.1 0.7 0.0080* 
2 13 3,000 0.2 0.5 0.0087 
      

 
 After	the	RMSE	consideration	Model	1	with	number	of	nodes	for	hidden	layer	=	13,	learning	
time = 3,000, learning rate = 0.1, and momentum = 0.7 was selected to be the model for corn.  
 The	correlation	coefficient	(r) comparison among Kc from Penman-Monteith method, Kc from 
linear	 regression,	 and	Kc	 from	ANNs	was	 conducted (Fig.	 4). The average difference of Kc from 
Penman-Monteith method (KcPenman) and	 Kc	 from	 ANNs	 (KcANNs) was 0.0070, while the average 
difference of KcPenman and Kc from linear regression (Kclinear) was 0.2954. The results indicated that 
the average difference of KcPenman and KcANNs was lower than the average difference of KcPenman and 
Kclinear. The	correlation	coefficient	(r)	of	KcPenman  and KcANNs was 0.9997, while KcPenman  and Kclinear 
was 0.4770. The	results	 revealed	 that	ANNs	model	 is	better	 than	 the	multiple	 regression	equations	
according	to	Chowdhary	and	Shrivastava	(2010)	and	Kotsiantis	et al. (2008).	Therefore,	ANNs	model	
was selected for Kc prediction under climate change scenarios of this study. 

(7) (13) (1) 
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3.2. The results of modeling phase 

 The results of model creation indicated the optimal 
number of nodes for hidden layer was 13. Therefore, 
the	structure	of	ANNs	model	of	input	layer	–	hidden	
layer	–	output	layer	of	corn	was	7-13-1	(Fig.	3).					
	 The	optimal	learning	time	from	the	findings	was	
3,000	with	 the	 lowest	RMSE	 (RMSE	difference	 =	
0.0002). The results of optimal learning rate: momen-
tum of corn were 0.1 : 0.7 and 0.2 : 0.5. The results of 
model	verification	using	validation	set	data	are	shown	
in Table 2. 
	 After	 the	 RMSE	 consideration	Model	 1	with	
number of nodes for hidden layer = 13, learning time 
= 3,000, learning rate = 0.1, and momentum = 0.7 was 
selected to be the model for corn. 
	 The	correlation	coefficient	(r) comparison among 
Kc from Penman-Monteith method, Kc from linear 
regression,	and	Kc	from	ANNs	was	conducted	(Fig.	4).	
The average difference of Kc from Penman-Monteith 
method	 (KcPenman)	 and	Kc	 from	ANNs	 (KcANNs) was 
0.0070, while the average difference of KcPenman and 
Kc	 from	 linear	 regression	 (Kclinear) was 0.2954. The 

results indicated that the average difference of KcPenman 
and KcANNs was lower than the average difference of 
KcPenman and Kclinear.	The	correlation	coefficient	(r) of 
KcPenman and KcANNs was 0.9997, while KcPenman and 
Kclinear	was	 0.4770.	The	 results	 revealed	 that	ANNs	
model is better than the multiple regression equations 
according	to	Chowdhary	and	Shrivastava	(2010)	and	
Kotsiantis et al.	(2008).	Therefore,	ANNs	model	was	
selected for Kc prediction under climate change sce-
narios of this study.
 
3.3. The results of Kc prediction 
 
 The results of Kccorn prediction under three sce-
narios are shown in Fig. 5. However, there were not 
significantly	different	among	three	scenarios.	Then,	the	
evapotranspiration	(ET)	pattern	was	chosen	to	predict	
the	Kc	changes.	ET	value	was	calculated	by	Kc	value	
multiply with the reference crop evapotranspiration 
(ETo).	The	results	of	ETcorn value were shown in Fig. 6. 
 Corn growth stage was divided into four stages 
including	initial	stage	(April),	crop	development	stage	
(May),	mid-season	stage	(June),	and	late	season	stage	

Table 2. Models for Deployment Phase

Model Number of nodes
for hidden layer Learning time Learning rate Momentum RMSE

1 13 3,000 0.1 0.7 0.0080*
2 13 3,000 0.2 0.5 0.0087

Figure 4. The comparison among Kcpenman, KcANNs, and Kclinear
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(July).	The	comparison	between	ET	of	scenario	1	and	
scenario	2	were	not	much	different.	ET	values	were	
slightly	decreased	about	3.34%.	The	ET	values	in	ini-
tial stage, crop development stage, mid-season stage, 
and late season stage of scenario 2 were decreased 
about 0.11%, 6.60%, 1.94%, and 2.91%, respectively. 
Maximum and minimum temperatures were slightly 
changed, precipitation were increased in April and 
May but decreased in June and July. Solar radiation and 
humidity	were	not	different.	Wind	speed	was	unstable.	
It	has	been	concluded	that	ETcorn on climate scenario 2 
was slightly decreased because total precipitations on 
seasonal were increased. The results revealed that the 
difference	between	ET	of	Scenario	1	and	2	indicated	
not much different in most growth stages. But in crop 

development	stage	during	May,	the	ET	values	of	Sce-
nario 1 seemed to be higher than Scenario 2. It has been 
concluded	that	ET	values	of	Scenario	2	was	slightly	
higher than Scenario 1 in crop development stage.
	 The	 comparison	 between	ET	of	 scenario	 1	 and	
scenario	 3	were	 high	 different.	ET	 values	were	 in-
creased	16.13%.	The	ET	values	in	initial	stage,	crop	
development stage, mid-season stage, and late season 
stage of scenario 3 were increased 6.09%, 14.86%, 
21.12%, and 20.40%, respectively. Maximum and 
minimum temperatures were increased. Precipitation 
was increased in April and July but decreased in May 
and June. The solar radiation was increased during April 
to	June.	Wind	speed	was	unstable	with	high	value.	The	
results	showed	the	difference	between	ET	of	Scenario	1	7 

 

 

 
 
Figure 6.	ETcorn and corn growth stage under three climate change scenarios 
  
 Corn	growth	stage	was	divided	into	four	stages	including	initial	stage	(April),	crop	
development	stage	(May),	mid-season	stage	(June),	and	late	season	stage	(July).	The comparison 
between	ET	of	scenario	1	and	scenario	2	were	not	much	different. ET	values	were	slightly	decreased	
about 3.34%. The	ET	values	in	initial stage, crop development stage, mid-season stage, and late 
season stage of scenario 2 were decreased about 0.11%, 6.60%, 1.94%, and 2.91%, respectively. 
Maximum and minimum temperatures were slightly changed, precipitation were increased in April 
and May but decreased in June	and	July.	Solar	radiation	and	humidity	were	not	different.	Wind	speed	
was	unstable.	It	has	been	concluded	that	ETcorn on climate scenario 2 was slightly decreased because 
total precipitations on seasonal were increased. The results revealed that the difference between	ET	of	
Scenario 1 and 2 indicated not much different in most growth stages. But in crop development stage 
during May, the ET	values of Scenario 1 seemed to be higher than Scenario 2. It has been concluded 
that	ET	values	of	Scenario	2	was	slightly	higher	than	Scenario 1 in crop development stage. 
 The	comparison	between	ET	of	scenario	1	and	scenario	3	were	high	different.	ET	values	were	
increased 16.13%.	The	ET	values	in	initial	stage,	crop	development	stage,	mid-season stage, and late 
season stage of scenario 3 were increased 6.09%, 14.86%, 21.12%, and 20.40%, respectively. 
Maximum and minimum temperatures were increased. Precipitation was increased in April and July 
but	decreased	in	May	and	June.	The	solar	radiation	was	increased	during	April	to	June.	Wind	speed	
was unstable with high value. The results showed the	difference	between	ET	of	Scenario	1	and	3	was 
slightly	different	in	all	stages.	ET	values of Scenario 3 seemed to be higher than those of Scenario 1. 
It	has	been	concluded	that	ET	of	Scenario	3	was	higher	than	Scenario	1	in	all	growth	stages	especially	
in crop development stage. The reasons should be the increasing of temperature, solar radiation, and 
wind speed in April and June.  
 
3.4. Guidelines for water management  
 
 The	results	of	 this	study	revealed	 that	Kc	will	be	changed	according	 to	 the	atmospheric	CO2 
concentration. The water management guidelines in the future to cope with the climate change which 
predicted by data mining technique can be developed as described as following.  
 (1)	The	 results	 indicated	precipitation	will	be	 increased	 in	May	and	decreased	 in	 June.	Corn 
requires enough water to maintain product quality and yield. Therefore, farmers should be shift crop 
season to be earlier.  
 (2)	Water	management	organizations should overhaul the water reservation management and 
revise the irrigation system related	to	new	Kc	values	and	ETo	under climate scenarios in the future. 
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and	3	was	slightly	different	in	all	stages.	ET	values	of	
Scenario 3 seemed to be higher than those of Scenario 
1.	 It	 has	 been	 concluded	 that	ET	of	Scenario	3	was	
higher than Scenario 1 in all growth stages especially 
in crop development stage. The reasons should be the 
increasing of temperature, solar radiation, and wind 
speed in April and June. 

3.4. Guidelines for water management 

 The results of this study revealed that Kc will be 
changed	according	to	the	atmospheric	CO2 concentra-
tion. The water management guidelines in the future 
to cope with the climate change which predicted by 
data mining technique can be developed as described 
as following. 
	 (1)	The	results	indicated	precipitation	will	be	in-
creased in May and decreased in June. Corn requires 
enough water to maintain product quality and yield. 
Therefore, farmers should be shift crop season to be 
earlier. 
	 (2)	Water	management	organizations	should	over-
haul the water reservation management and revise the 
irrigation	 system	 related	 to	 new	Kc	values	 and	ETo	
under climate scenarios in the future.
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